Abstract

For studying the influence of the vertical semicircular canals on spatial orientation in roll, the subjective visual horizontal (SVH) and the subjective transversal plane of the head (STP) were measured in a situation where the vertical canals sense a roll-velocity stimulus while the otolith organs persistently signal that the head is upright in roll. During gondola centrifugation (resultant gravitoinertial force vector 2.5 G, gondola inclination 66 degrees) subjects were exposed to controlled rotational head movements (angular speed 27 degrees/s, magnitude 40 degrees) about the yaw (body z-) axis, produced by means of a motor-driven helmet. This causes a roll-plane Coriolis stimulus to the canals, while the otoliths persistently sense upright head position in roll. The subjects reported intense sensations of rotation and tilt in the roll plane. This was reflected in tilts of both the SVH and STP. The initial tilt of the SVH was 13.0 +/- 9.7 degrees (mean +/- S.D., n=10). The STP was changed in the opposite direction. The initial tilt was 23.8 +/- 12.2 degrees (mean +/- S.D., n=5). The changes in the SVH and STP were not of equal magnitude. A few subjects who had almost no deviations in the SVH showed pronounced tilts of the STP. The time constant for exponential decay of the tilts of the SVH and STP was on average approximately 1 minute. These findings indicate that a difference in activity of the vertical canals in the right versus left ear may cause substantial tilts of the SVH even if there is no asymmetry in the activity of the otolith system. Further, the canal stimulus may induce a tilt of the fundamental egocentric frame of reference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call