Abstract

A long-standing hypothesis posits that morphological changes may be more likely to result from changes in regulation of gene expression than from changes in the protein coding sequences of genes. We have compared the expression pattern of the twisted gastrulation (tsg) gene among five Drosophila species: D. melanogaster, D. simulans, D. subobscura, D. mojavensis, and D. virilis. The tsg gene encodes a secreted protein that is required for the specification of dorsal midline fates in the Drosophila early embryo. TSG is unlike other secreted growth and differentiation factors in Drosophila in that its expression pattern can be experimentally varied and still result in normal development. Because of this, its regulatory region may be freer to diverge than that of other developmental genes whose misexpression may lead to lethal defects. Thus, the tsg gene may be a good indicator of the frequency and nature of evolutionary changes affecting patterns of gene expression. Over approximately 60 million years (Myr), the tsg gene has retained a dorsal-on/ventral-off pattern and a middorsal region of expression; but there have been marked changes in the middorsal domain of expression as well as the appearance/loss of other domains of expression along the anterior/posterior axis. Changes between closely related species (approximately 2-5 Myr since divergence) that are not reflected among more distantly related species suggest frequent changes in gene expression over evolutionary time. These changes in gene expression may serve as the raw material for eventual evolutionary changes in morphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call