Abstract

Monoclonal antibodies specific for three major plasma membrane (PM) proteins, previously referenced as PM protein 2.0, 4.85 and 5.0, and one specific for an unreferenced PM protein (Mr 80,000) were used with indirect fluorescence microscopy to detect the effects of capacitation on the localization of these PM proteins. In ejaculated or cauda spermatozoa, incubation in the capacitating medium caused the appearance of fluorescence in the flagellum and either a loss of fluorescence on the PM overlying the sperm head (PM proteins of 5.0 and Mr 80,000) or a delocalization of fluorescence on the head PM (PM proteins 2.0 and 4.85). Labelling spermatozoa with divalent antibody and then capacitating them indicated the PM protein 5.0 and that of Mr 80,000 migrated out of the head plasma membrane into the flagellar PM during capacitation. These antigens re-entered the head PM when fresh seminal plasma was added after the capacitation period or when energy metabolism was inhibited by azide. Cytochalasin D, an inhibitor of the polymerization of actin, prevented movement of PM protein 5.0 and that of Mr 80,000 of the head PM into the flagellum during incubation in the capacitation medium and prevented re-entry of these antigens from the flagellum into the head PM after incubation in this medium. Localization changes occurring with capacitation were time-dependent but independent of the method of preparing samples for microscopy. For the major PM proteins 4.85 and 5.0, a much smaller percentage of caput spermatozoa (approximately 20%) showed specific localization changes compared to those of the cauda (approximately 80%). Chelation of Ca2+ inhibited these changes in ejaculated spermatozoa and fresh seminal plasma, added to capacitated spermatozoa, restored the localization pattern characteristic of uncapacitated spermatozoa. These observations suggest that the organization of major proteins in the plasma membrane overlying the sperm head is altered during capacitation. These changes are reversible, are dependent on sperm maturation and also appear to involve actin filament interactions with the plasma membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.