Abstract

The spatial distribution of the optogalvanic (OG) signal in argon at the 801.489 nm (<TEX>$1s_5-2p_8$</TEX> transition at the metastable level in Paschen notation) was investigated in the radial direction of a hollow cathode discharge tube. The results of this experiment showed that the OG signal amplitude decreases in accordance with the following two conditions; first, the level of discharge current and second, the distance from the cathode dark space. These results can be quantified by analyzing the electron density profile along the discharge regions, which can directly influence the collisional ionization induced by electron impact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.