Abstract

In albino rabbits aged from the 16th postconceptional day (16PCD) to adulthood, the number of axons in the optic nerves were estimated from sample areas totalling 1–12% of the cross-sectional area of the nerve. On the 16PCD there are about 20,000 axons in the optic stalk. The number of axons in the retrobulbar part of the optic nerve reaches a peak value of 766,000 on the 23PCD, and then decreases to about 350,000 by the 32PCD (the day of birth). The number of axons does not change between the 32PCD and 50PCD, but thereafter it slowly decreases, reaching the adult number (294,000) by the 84PCD. A similar trend is apparent in pigmented animals. Thus, on the 25PCD there are 736,000 axons in the retrobulbar part of the optic nerve and the number decreases to 428,000 by the 31PCD. In the adult pigmented rabbit there are 280,000 axons in the optic nerve. In animals younger than the 32PCD, growth cones are present, and the number of axons in the prechiasmal part of the optic nerve was 8–22% lower than in the retrobulbar part of the same nerve. These observations suggest that there is a continued outgrowth of axons from the eye towards the target nuclei. By the 32PCD, the numbers of axons in the retrobulbar and prechiasmal parts of the nerve were very similar, suggesting that by this age all axons had reached the chiasm. The numbers of retinal ganglion cells (RGCs) labelled by massive injections of horseradish peroxidase into the retino-recipient nuclei were estimated in albino rabbits aged from the 24PCD to adulthood. RGCs were counted in evenly spaced sample areas totalling 4–11% of the retinal area. On the 24PCD, the number of labelled RGCs (500,000) was lower than the number of axons in the optic nerve (probably because not all RGC axons had reached their target nuclei by this age). However, by the 27PCD the number of labelled RGCs (550,000) was very similar to the number of prechiasmal axons (568,000). At all ages thereafter, the numbers of both RGCs and axons were very similar, with adult RGC numbers (about 291,000) being reached by the 85PCD. We conclude that axon loss in the rabbit optic nerve after the 27PCD is almost certainly due to the elimination (presumably death) of the parent RGCs, and we suggest that RGC death is also the most likely cause of axon loss prior to the 27PCD. Although the albino rabbit has a very small binocular overlap in its visual field and only a tiny proportion of RGCs project ipsilaterally, the proportion of axons lost during the development of the optic nerve is 60%. This loss is greater than observed in the highly binocular macaque (54%; Rakic and Riley, Science, 219 (1983) 1441–1444) and suggests that binocular competition accounts for no more than a small proportion of axon loss in these species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call