Abstract

Changes in the microstructure and hydrogen storage properties of Ti–Cr–V alloys were investigated after a combination of ball milling and heat treatment. Two different sets of balls and vials made of tungsten carbide (WC) and stainless steel (STS) were used for milling the samples. Ball milling using WC balls and vials induced WC contamination, and it caused compositional changes in the matrix during heat treatment. When STS balls and vials were used, meanwhile, no peak of the second phase caused by contamination was found in the X-ray diffraction (XRD) data. In the case of the sample that completed only the milling process, the crystallite size calculated from the XRD data, 20–30 nm, agreed well with the grain size obtained from transmission electron microscopy (TEM). On the other hand, for the sample that was heat treated after milling, the strain decreased from 0.74% to 0.18%, the crystallite size increased to 70–80 nm, and the grain size grew up to the level of hundreds of nanometers. The changes in microstructure induced by the ball milling and heat treatment influenced the hydrogen storage properties, such as plateau pressure, hysteresis, and phase transformation with hydrogen absorption. Thus, the relationship between the microstructure and hydrogen storage properties can be explained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call