Abstract

Manganese toxicity has limited sugarcane (Saccharum spp. hybrid.) growth and production in acidic soils in south China. The rhizosphere plays an irreplaceable role in plant adaptation to soil abiotic stress, but the responses of the sugarcane rhizosphere to manganese toxicity are still unknown. We designed pot experiments in Mn-rich acidic soil, collected the sugarcane rhizosphere and bulk soil samples, and then investigated the changes in Mn-related soil parameters and microbiome. The results indicated that the water-soluble and exchangeable manganese concentrations in the sugarcane rhizosphere were significantly lower than that in the bulk soil, which was not associated with soil pH changes. In contrast, the number of bacteria and the activity of peroxidase, sucrase, urease, and laccase in the rhizosphere were significantly higher. The 16S rDNA sequencing results showed that the bacterial diversity and quantity along with the abundance of Proteobacteria in the rhizosphere were significantly higher than in the bulk soil, while the abundance of Acidobacteria was lower than in the bulk soil. The soil laccase activity and the number of bacteria decreased significantly with the increase in the manganese toxicity stress. Finally, the relative abundance of proteins associated with manganese transportation and oxidation was significantly higher in the rhizosphere soil. In summary, the Mn-induced response of the rhizosphere is an important mechanism in sugarcane adaptation to manganese toxicity in acidic soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call