Abstract
A massive challenge in ecotoxicology is assessing how the interaction of contaminants, climate change, and biotic stressors shapes the structure and functions of natural populations. Furthermore, it is not known whether contemporary evolutionary responses to multiple stressors across multigenerations may alter the interaction of these stressors. To address these issues, we exposed Moina dubia to lead (Pb, 50 μg/L) under two temperatures (25 and 28 °C) with/without predator cues from climbing perch (Anabas testudineus) for 11 generations (F1-F11). We assessed changes in M. dubia fitness, including development time, adult size, lifespan, fecundity, and neonate production. We found strong negative effects of Pb, elevated temperature, and predator cues on the fitness of M. dubia. Strikingly, Pb-induced reduction in the performance of M. dubia was stronger at 25 °C and in the absence of predator cues. The individual and interactive effects of Pb, temperature, and predator cues on M. dubia were stronger across F1-F9 and generally leveled off in F10-F11. Our results highlight the high vulnerability of M. dubia to multiple stressors, thus weakening top-down control on algal blooms in eutrophic lakes. Our study underscores the importance of integrating evolutionary responses in realistic ecotoxicological risk assessments of contaminants interacting with climatic and biotic stressors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.