Abstract

Fluorescence has been suggested as a method with which to detect and identify bacterial spores. To better understand the nature of the fluorescence signal, we observed the intrinsic steady-state fluorescence and phosphorescence spectra of Bacillus globigii (BG) in both dried and aqueous forms. In vitro, dried, and suspension forms of BG were measured at room temperature in 300-600-nm excitation wavelengths. Also, the phosphorescence of dry BG spores was measured at room temperature at 300-600-nm excitation wavelengths. The wet BG spores exhibited a strong maximum in their fluorescence spectrum, with the peak excitation wavelength near 300 nm and emission wavelength near 400 nm. When the BG was dried, this peak shifted to an approximately 450-nm excitation maximum and an 500-nm emission maximum. The difference between the wet and the dry spore fluorescence spectra cannot be explained by the phosphorescence of the dry spores. Other changes must take place when the spores are wet to account for the large changes observed in the spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.