Abstract

The gut microbiota has a crucial role in host physiology and fitness. Host-microbiota relationships can be disrupted by environmental stressors, which further affect host growth and survival. However, the link between host performance and the gut microbiota composition shaped by increasing antibiotic pollution under different food conditions is not clearly understood. In the present study, we used Daphnia magna as a model organism to investigate the interactive effects of diets (Chlorella with or without Microcystis) and antibiotics on its life history traits, gut microbiota alterations, and their relationship. The results showed that poor diet consumption by D. magna at low and high antibiotic concentrations reduced reproduction and survival. Under good diet conditions, the fitness was reduced only at a high antibiotic concentration. Under good diet conditions, high concentration of antibiotics reduced the abundance of Comamonadaceae and increased the abundance of Pseudomonadaceae, whereas under poor diet conditions, both low and high concentrations of antibiotics increased the abundance of Pseudomonadaceae. Performances of life history traits were positively correlated with an increased abundance of Comamonadaceae but were negatively correlated with increased Pseudomonadaceae abundance. The results of this study revealed the interactive effects of diet and antibiotics on D. magna fitness and correlations between bacterial abundance and life history traits, which has important implications for understanding the effects of pollutants on host-microbiota interactions through changes in phenotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call