Abstract

Abstract Sensible heat flux (H), latent heat flux (LE), and net radiation (NR) are important surface energy components that directly influence climate systems. In this study, the changes in the surface energy and their contributions from global climate change and/or land-cover change over eastern China during the past nearly 30 years were investigated and assessed using a process-based land surface model [the Ecosystem–Atmosphere Simulation Scheme (EASS)]. The modeled results show that climate change contributed more to the changes of land surface energy fluxes than land-cover change, with their contribution ratio reaching 4:1 or even higher. Annual average temperature increased before 2000 and reversed thereafter; annual total precipitation continually decreased, and incident solar radiation continually increased over the past nearly 30 years. These climatic changes could lead to increased NR, H, and LE, assuming land cover remained unchanged during the past nearly 30 years. Among these meteorological variables, at spatial distribution, the incident solar radiation has the greatest effect on land surface energy exchange. The impacts of land-cover change on the seasonal variations in land surface heat fluxes between the four periods were large, especially for H. The changes in the regional energy fluxes resulting from different land-cover type conversions varied greatly. The conversion from farmland to evergreen coniferous forests had the greatest influence on land surface energy exchange, leading to a decrease in H by 19.39% and an increase in LE and NR by 7.44% and 2.74%, respectively. The results of this study can provide a basis and reference for climate change adaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.