Abstract

AbstractNitrous oxide (N2O) is a strong greenhouse gas whose mole fraction in the atmosphere has increased over the industrial period. We present a new set of isotope measurements of N2O in air extracted from ice cores covering the last 3,000 years. For the preindustrial (PI) atmosphere, we find an average N2O mole fraction of (267 ± 1) nmol/mol and average tropospheric N2O isotopic values of δ15NavPI = (9.5 ± 0.1)‰, δ18OPI = (47.1 ± 0.2)‰, δ15NαPI = (17.8 ± 0.4)‰, and δ15ΝβPI = (1.2 ± 0.4)‰. From PI to modern times all isotope signatures decreased with a total change of δ15Nav = (−2.7 ± 0.2)‰, δ18O = (−2.5 ± 0.4)‰, δ15Nα = (−2.0 ± 0.7)‰, and δ15Νβ (−3.5 ± 0.7)‰. Interestingly, the temporal evolution is not the same for δ15Nav and δ18O. δ18O trends are relatively larger during the early part, and δ15Nav trends are larger during the late part of the industrial period, implying a decoupling of sources over the industrial period. Using a mass balance model, we determined the isotopic composition of the total average N2O source. Assuming that the total present source is the sum of a constant natural source and an increasing anthropogenic source, this anthropogenic source has an isotopic signature of δ15Navsource,anthrop = (−15.0 ± 2.6)‰, δ18Osource,anthrop = (30.0 ± 2.6)‰, δ15Nαsource,anthrop = (−4.5 ± 1.7)‰, and δ15Nβsource,anthrop = (−24.0 ± 8.4)‰. The 15N site preference of the source has increased since PI times, which is indicative of a relative shift from denitrification to nitrification sources, consistent with agricultural emissions playing a major role in the N2O increase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.