Abstract

Osteogenic differentiation has been reportedly regulated by various mechanical stresses, including fluid shear stress and tensile and compressive loading. The promotion of osteoblastic differentiation by these mechanical stresses is accompanied by reorganization of the F-actin cytoskeleton, which is deeply involved in intracellular forces and the mechanical environment. However, there is limited information about the effect on the mechanical environment of the intracellular nucleus, such as the mechanical properties of the nucleus and intracellular forces exerted on the nucleus, which have recently been found to be directly involved in various cellular functions. Here, we investigated the changes in the intracellular force applied to the nucleus and the effect on nuclear morphology and mechanical properties during osteogenic differentiation in human osteoblast-like cells (Saos-2). We carried out cell morphological analyses with confocal fluorescence microscopy, nuclear indentation test with atomic force microscopy (AFM), and fluorescence recovery after photobleaching (FRAP) for intranuclear DNA. The results revealed that a significant reorganization of the F-actin cytoskeleton from the nuclear surfaces to the cell periphery occurred in the osteogenic differentiation processes, simultaneously with the reduction of compressive forces to the nucleus. Such changes also facilitated nuclear shrinkage and stiffening, and further intranuclear chromatin compaction. The results indicate that the reduction of the intracellular compressive force due to reorganization of the F-actin cytoskeleton affects the intra- and extra-mechanical environment of the nucleus, and this change may affect gene expression and DNA replication in the osteogenic differentiation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call