Abstract

The problem of the change in gravitational energy of a colliding galaxy due to tidal effects is considered. The change in the internal energy, the mass of escaping matter and the change in the mean radius of the test galaxy have been estimated for a relative velocity of 1000 km s−1 for three distances of closest approach for the following four cases: (a) both galaxies centrally concentrated, (b) both galaxies homogeneous, (c) test galaxy centrally concentrated, field galaxy homogeneous, and (d) test galaxy homogeneous, field galaxy centrally concentrated. The masses and radii of the two galaxies are taken as 1011M⊙ and 10 kpc respectively. For simplicity, the galaxies are assumed to be spherically symmetric and the distribution of mass within a centrally concentrated galaxy is assumed to be that of a polytrope of indexn=4. The results also provide estimates for the minimum relative velocity a galaxy must have in order that it may not be captured by another to form a double system. It has been found that normally a relative velocity of less than about 500 km s−1 will lead to the formation of a double galaxy by tidal capture. In the case of a head-on collision between two centrally concentrated galaxies even a relative velocity of about 1000 km s−1 is small enough for tidal capture. The changes in the structure of the galaxies for relative velocities equal to velocity of escape are also indicated. These results show that there is no escape of matter from the test galaxy in cases (b) and (c). In the case (a) the escape of matter can be as high as 4% of the total mass. The head-on collision between galaxies are normally not accompanied by any escape of matter. All the gain in the internal energy of galaxies during such collisions results in increase in their dimensions. The fractional increase in the mean radius of the test galaxy in the head-on collision is 1.5 in the case (a), 3.2 in the case (b) and 0.01 in the case (c). In the case (d) the test galaxy will be disrupted by the tidal forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.