Abstract

AbstractApart from global scale surface warming, anthropogenic forcings also lead to warming and thermal expansion of the lower atmosphere. Here we investigate these effects using the geopotential height at 500 hPa, an indicator of the combined thermodynamic and dynamic climatic response to external forcings. We employ optimal fingerprinting, which uses information from reanalysis data sets and experiments with seven state‐of‐the‐art climate models, to assess the role of anthropogenic and natural influences on changes in the geopotential height during the satellite era. A significant global increase in the annual and seasonal mean geopotential height due to human influence is detected, a result confirmed with four different reanalysis data sets. A more moderate increase in the annual mean associated with natural forcings is also detected. Our findings, consistent with previous detection and attribution studies of changes in temperature and sea level pressure, indicate the prominent role of human influence on some recent climatic changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call