Abstract

Pigment epithelium-derived factor (PEDF) is a broad-spectrum angiogenesis inhibitor that displays potent antimetastatic activity in multiple tumor types. We have previously shown that PEDF prevents primary tumor growth and metastatic spread of human melanoma in mouse experimental models. Consistent with these observations, PEDF expression is lost at the late stages of melanoma progression, allowing melanoma cells to become angiogenic, migratory, and invasive. PEDF's ability to modify the interplay between the host and tumor tissues strongly supports its use as a therapeutic agent for the treatment of metastatic melanoma. However, transition to the clinic requires a more detailed knowledge of the molecular mechanisms underpinning PEDF's activity. In this study, we describe changes in the gene expression profile of A375 human melanoma cells induced by PEDF overexpression. PEDF modulated diverse categories of genes known to be involved in angiogenesis and migration. It downregulated cytokines such as interleukin-8 and extracellular matrix proteins such as collagen IV, while it upregulated fibronectin. Multiple transcripts previously described as contributing to the acquisition of malignant phenotype by melanoma were also diminished by PEDF overexpression, among which we validated galectin 3 and jagged 1. In addition, PEDF downregulated S100β and melanoma inhibitory activity, which are widely used in the pathological diagnosis of melanoma. Interestingly, PEDF increased the expression of melanophilin and decreased rab27A, which are relevant targets for melanosome transport; suggesting that PEDF could directly impinge on melanocytic lineage-specific processes. Our study identifies new molecular targets and signaling pathways that may potentially contribute to determine PEDF's ability to restrict the aggressiveness of A375 human melanoma cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.