Abstract

Physiological and pathophysiological conditions often affect the expression of drug metabolizing enzymes such as cytochromes P450 (P450s). Diabetes is one such factor and it is of great interest to understand its effects on drug metabolism, since diabetic patients generally have increased need for pharmacotherapy. We have recently reported the coordinated reduction of CYP2B1/2 and their transcriptional regulator constitutive androstane receptor (CAR), a member of the nuclear receptor superfamily, in the liver of genetically obese/diabetic Zucker fatty rats (Xiong, H., Yoshinari, K., et al., Drug Metab. Dispos., 30, 918-923, 2002). In this study, we investigated the expression of P450s and liver-enriched nuclear receptors in the liver of genetically diabetic db/db mice. Surprisingly, both CYP2B10 and CAR levels were increased in db/db mice. CYP4A expression was also increased at both mRNA and protein levels in db/db mice, while those of peroxisome proliferator-activated receptor alpha, a key regulator for the transcriptional activation of CYP4As, were comparable to those in age-matched C57BL/6 mice. Our results demonstrate that db/db mice and Zucker fatty rats exhibit different expression profiles of P450s and nuclear receptors despite their similar characteristics for obesity and diabetes resulting from a defect in the leptin signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.