Abstract

We investigated the contribution of changes in the Earth's magnetic field to long‐term trends in the ionosphere, thermosphere, and solar quiet (Sq) magnetic variation using the Coupled Magnetosphere‐Ionosphere‐Thermosphere (CMIT) model. Simulations with the magnetic fields of 1908, 1958, and 2008 were done. The strongest differences occurred between ~40°S–40°N and ~100°W–50°E, which we refer to as the Atlantic region. The height and critical frequency of the F2 layer peak, hmF2 and foF2, changed due to changes in the vertical E × B drift and the vertical components of diffusion and transport by neutral winds along the magnetic field. Changes in electron density resulted in changes in electron temperature of the opposite sign, which in turn produced small corresponding changes in ion temperature. Changes in neutral temperature were not statistically significant. Strong changes in the daily amplitude of the Sq variation occurred at low magnetic latitudes due to the northward movement of the magnetic equator and the westward drift of the magnetic field. The simulated changes in hmF2, foF2, and Sq amplitude translate into typical trends of ±1 km/decade (night) to ±3 km/decade (day), −0.1 to +0.05 MHz/decade, and ±5 to ±10 nT/century, respectively. These are mostly comparable in magnitude to observed trends in the Atlantic region. The simulated Atlantic region trends in hmF2 and foF2 are ~2.5 times larger than the estimated effect of enhanced greenhouse gases on hmF2 and foF2. The secular variation of the Earth's magnetic field may therefore be the dominant cause of trends in the Atlantic region ionosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.