Abstract
AbstractIn the context of China's “dual carbon” goal, emissions of air pollutants are expected to significantly decrease in the future. Thus, the direct climate effects of black carbon (BC) aerosols in East Asia are investigated under this goal using an updated regional climate and chemistry model. The simulated annual average BC concentration over East Asia is approximately 1.29 μg/m3 in the last decade. Compared to those in 2010–2020, both the BC column burden and instantaneous direct radiative forcing in East Asia decrease by more than 55% and 80%, respectively, in the carbon peak year (2030s) and the carbon neutrality year (2060s). Conversely, the BC effective radiative forcing (ERF) and regional climate responses to BC exhibit substantial nonlinearity to emission reduction, possibly resulting from different adjustments of thermal‐dynamic fields and clouds from BC‐radiation interactions. The regional mean BC ERF at the tropopause over East Asia is approximately +1.11 W/m2 in 2010–2020 while negative in the 2060s. BC‐radiation interactions in the present‐day impose a significant annual mean cooling of −0.2 to −0.5 K in central China but warming +0.3 K in the Tibetan Plateau. As China's BC emissions decline, surface temperature responses show a mixed picture compared to 2010–2020, with more cooling in eastern China and Tibet of −0.2 to −0.3 K in the 2030s, but more warming in central China of approximately +0.3 K by the 2060s. The Indian BC might play a more important role in East Asian climate with reduction of BC emissions in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.