Abstract

Changes associated with feeding in the histological and cytological structure of the digestive gland of the loliginid squid Sepioteuthis lessoniana were examined, along with the nature of both the intracellular and extracellular enzymes produced by the gland. The timing of the release of the extracellular enzymes during the digestive cycle was also determined using a quantitative experimental program. Like that of all coleoid cephalopods, the digestive gland was characterised by one type of cell with several functional stages. As is the case for other loliginid squids, however, the digestive cells did not contain the large enzyme-carrying boules that characterise the digestive glands of most cephalopods. Instead, smaller secretory granules were found in the digestive cells and these may be the enzyme carriers. The prominent rough endoplasmic reticulum, large mitochondria and active Golgi complexes present in the digestive cells are characteristic of cephalopods and indicate a high metabolic activity. Like that of other cephalopods, endocytotic absorption of nutrients and intracellular digestion occurs in the digestive gland of this squid. From quantitative and qualitative examinations of structural changes in the digestive gland of S. lessoniana after feeding, a schedule of its function during the course of digestion was proposed. This indicated that digestion was very rapid, being completed in as little as 4 h in S. lessoniana. Extracellular digestive enzymes were only released after the first hour following feeding, which implies that they are stored in the stomach between meals to increase digestive efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.