Abstract

Subsurface microorganisms may respond to increased CO2 levels in ways that significantly affect pore fluid chemistry. Changes in CO2 concentration or speciation may result from the injection of supercritical CO2 (scCO2) into deep aquifers. Therefore, understanding subsurface microbial responses to scCO2, or unnaturally high levels of dissolved CO2, will help to evaluate the use of geosequestration to reduce atmospheric CO2 emissions. This study characterized microbial community changes at the 16S rRNA gene level during a scCO2 geosequestration experiment in the 1.4 km-deep Paaratte Formation of the Otway Basin, Australia. One hundred and fifty tons of mixed scCO2 and groundwater was pumped into the sandstone Paaratte aquifer over 4 days. A novel U-tube sampling system was used to obtain groundwater samples under in situ pressure conditions for geochemical analyses and DNA extraction. Decreases in pH and temperature of 2.6 log units and 5.8°C, respectively, were observed. Polyethylene glycols (PEGs) were detected in the groundwater prior to scCO2 injection and were interpreted as residual from drilling fluid used during the emplacement of the CO2 injection well. Changes in microbial community structure prior to scCO2 injection revealed a general shift from Firmicutes to Proteobacteria concurrent with the disappearance of PEGs. However, the scCO2 injection event, including changes in response to the associated variables (e.g., pH, temperature and salinity), resulted in increases in the relative abundances of Comamonadaceae and Sphingomonadaceae suggesting the potential for enhanced scCO2 tolerance of these groups. This study demonstrates a successful new in situ sampling approach for detecting microbial community changes associated with an scCO2 geosequestration event.

Highlights

  • The injection of supercritical CO2 into deep aquifers for long-term storage is currently being evaluated as a strategy for reducing global atmospheric CO2 levels or mitigating industrial CO2 emissions

  • Variations in total dissolved solids (TDS) levels were in the range of 140 mg L−1 prior to supercritical CO2 (scCO2) injection and as high as 392 mg L−1 post-scCO2 exposure (Figure S3)

  • The observed changes in pH were primarily due to the formation of carbonic acid as a consequence of partial scCO2 dissolution in to groundwater, and the increase in TDS was most likely related to acid-induced mineral dissolution (Kharaka et al, 2006)

Read more

Summary

Introduction

The injection of supercritical CO2 (scCO2) into deep aquifers for long-term storage (geosequestration) is currently being evaluated as a strategy for reducing global atmospheric CO2 levels or mitigating industrial CO2 emissions (http://www.globalccsinstitute. com/projects/browse). Changes in subsurface microbial community structure or activity could alter terminal electron accepting processes (TEAPs) to impact the geochemistry and mineralogy (Gadd, 2010) of the CO2 storage aquifer, potentially resulting in changes to porosity that could impact the distribution of injected scCO2. Such changes could include increased methanogenesis from dissolved CO2 (i.e., HCO−3 ) under circumneutral pH conditions (Sato et al, 2013), or the CO2-driven inhibition of carbon monoxide (CO) oxidation with deleterious impacts to microbial autotrophy and acetogenesis (Ragsdale, 2004)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call