Abstract

Changes in the composition of cell fractions, and in particular of detergent-resistant membranes (DRM) isolated from cultured rat cerebellar granule cells, were taken as possible changes in lipid raft composition during a signal transduction event. After activation of protein kinase C (PKC) with phorbol esters (PMA) or glutamate, the content of PKC and of proteins highly enriched (GAP43, Fyn, and PrP(c)) or not (MARCKS) in DRM was followed. PKC activation strongly increased its association with membranes (from 2% to 75%), causing its enrichment within DRM; the substrate GAP43, enriched in DRM, remained membrane associated, but its proportion in DRM dramatically decreased (from about 40% to 2.5%), suggesting its shift from raft to nonraft membranes, possibly as a consequence of phosphorylation by PKC. The distribution of Fyn and PrP(c) (DRM-enriched) and of MARCKS (present mainly outside DRM) did not change. PKC activation was followed by an increase of GAP43 and MARCKS phosphorylation (about 7- and 8-fold, respectively). Noteworthy was that, after cell treatment with the lipid raft-disrupting drug methyl-beta-cyclodextrin, PKC activation occurred normally, followed by MARCKS phosphorylation, but GAP43 phosphorylation did not occur. Taken altogether, these data suggest that the integrity of lipid rafts is necessary for PKC to affect GAP43 and catalyze its phosphorylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call