Abstract

Vermicomposting is the process by which organic waste is broken down through the synergistic actions of earthworms and microbial communities. Although vermicomposting has been shown to effectively reduce organic biomass and generate high-quality fertilizer for plants, little is known about the bacterial communities that are involved in this decomposition process. Since optimization of vermicomposting for commercial use necessitates additional knowledge of the underlying biological processes, this study sought to characterize the bacterial succession involved in the vermicomposting of Scotch broom (Cytisus scoparius), a leguminous shrub that has become invasive around the world with consequences for the dynamics and productivity of the ecosystems they occupy. Scotch broom was processed in a pilot-scale vermireactor for 91 days with the earthworm species Eisenia andrei. Samples were taken at the initiation of vermicomposting, and days 14, 42 and 91, representing both active and mature stages of vermicomposting. Significant changes (P < 0.0001) in the bacterial community composition (richness and evenness) were observed throughout the process. Increases in taxonomic diversity were accompanied by increases in functional diversity of the bacterial community, including metabolic capacity, streptomycin and salicylic acid synthesis, and nitrification. These results highlight the role of bacterial succession during the vermicomposting process and provide evidence of microbial functions that may explain the beneficial effects of vermicompost on soil and plants.

Highlights

  • Vermicompost is a nutrient-rich organic amendment generated from organic waste through the combined action of earthworms and microorganisms[1,2,3]

  • Several studies have evaluated bacterial succession during composting, less is known about the effect of vermicomposting on bacterial community composition

  • This study provides a unique perspective on bacterial succession during vermicomposting of vegetal material and the Scotch broom in particular

Read more

Summary

Introduction

Vermicompost is a nutrient-rich organic amendment generated from organic waste through the combined action of earthworms and microorganisms[1,2,3]. Vermicomposting was previously shown to be successful in reducing the mass of Scotch broom and converting it in a nutrient-rich and stabilized peat-like vermicompost without phytotoxicity attributed to its polyphenol content[25]. The aim of the present study was to further characterize the bacterial communities that participate in the process of vermicomposting of Scotch broom by using high-throughput sequencing and metagenomics analyses to assess taxonomic and phylogenetic bacterial diversity in a pilot-scale vermireactor over a period of 91 days. These data were used to describe bacterial succession during vermicomposting and infer metabolic functions of the vermicompost microbiome

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call