Abstract
With recent developments in current density imaging (CDI), it is feasible to utilize this new technique in brain imaging applications. Since CDI's ability to measure changes in current density depends on a concomitant activity-dependent change in the conductivity of the brain tissue, we have examined the changes in complex conductivity during spreading depression (SD) in rodent neocortex using a coaxial probe. SD was chosen because it is often referred to as an animal model of cerebral ischemia and migraine with aura. The conductivity measurements revealed a change with short latency (30-60 s) followed by a change with a longer latency (200-300 s). This change in conductivity with short latency has not been reported before, and we conjecture that it may be the priming or triggering mechanism prior to the main SD episode. A 20% change in conductivity during SD is sufficiently large to be measured by CDI. Therefore, the ability to measure changes in the conductivity, as opposed to metabolic changes, makes CDI a viable approach to the study of ischemia and migraine with aura.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.