Abstract
The community structure of beta-subclass Proteobacteria ammonia-oxidizing bacteria was determined in semi-natural chalk grassland soils at different stages of secondary succession. Both culture-mediated (most probable number; MPN) and direct nucleic acid-based approaches targeting genes encoding 16S rRNA and the AmoA subunit of ammonia monooxygenase were used. Similar shifts were detected in the composition of the ammonia oxidizer communities by both culture-dependent and independent approaches. A predominance of Nitrosospira sequence cluster 3 in early successional fields was replaced by Nitrosospira sequence cluster 4 in late successional fields. The rate of this shift differed between the two areas examined. This shift occurred in a background of relative stability in the dominant bacterial populations in the soil, as determined by domain-level polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Molecular analysis of enrichment cultures obtained using different ammonia concentrations revealed biases towards Nitrosospira sequence cluster 3 or Nitrosospira sequence cluster 4 under high- or low-ammonia conditions respectively. High-ammonia MPNs suggested a decease in ammonia oxidizer numbers with succession, but low-ammonia MPNs and competitive PCR targeting amoA failed to support such a trend. Ammonia turnover rate, not specific changes in plant diversity and species composition, is implicated as the major determinant of ammonia oxidizer community structure in successional chalk grassland soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.