Abstract

BackgroundThe cerebrospinal fluid (CSF) circulatory system is involved in neuroimmune regulation, cerebral detoxification, and delivery of various endogenous and exogenous substances. In conjunction with the choroid plexuses, which form the main barrier site between blood and CSF, this fluid participates in controlling the environment of the developing brain. The lack of comprehensive data on developmental changes in CSF volume and distribution impairs our understanding of CSF contribution to brain development, and limits the interpretation of blood-CSF permeability data. To address these issues, we describe the evolution of the CSF circulatory system during the perinatal period and have quantified the volume of the different ventricular, cisternal and subarachnoid CSF compartments at three ages in developing rats.MethodsImmunohistofluorescence was used to visualize tight junctions in parenchymal and meningeal vessels, and in choroid plexus epithelium of 19-day fetal rats. A quantitative method based on serial sectioning of frozen head and surface measurements at the cutting plane was used to determine the volume of twenty different CSF compartments in rat brain on embryonic day 19 (E19), and postnatal days 2 (P2) and 9 (P9). Blood-CSF permeability constants for sucrose were established at P2 and P9, following CSF sampling from the cisterna magna.ResultsClaudin-1 and claudin-5 immunohistofluorescence labeling illustrated the barrier phenotype acquired by all blood–brain and blood-CSF interfaces throughout the entire CNS in E19 rats. This should ensure that brain fluid composition is regulated and independent from plasma composition in developing brain. Analysis of the caudo-rostral profiles of CSF distribution and of the volume of twenty CSF compartments indicated that the CSF-to-cranial cavity volume ratio decreases from 30% at E19 to 10% at P9. CSF compartmentalization within the brain changes during this period, with a major decrease in CSF-to-brain volume ratio in the caudal half of the brain. Integrating CSF volume with the measurement of permeability constants, adds to our understanding of the apparent postnatal decrease in blood-CSF permeability to sucrose.ConclusionReference data on CSF compartment volumes throughout development are provided. Such data can be used to refine blood-CSF permeability constants in developing rats, and should help a better understanding of diffusion, bulk flow, and volume transmission in the developing brain.Electronic supplementary materialThe online version of this article (doi:10.1186/s12987-015-0001-2) contains supplementary material, which is available to authorized users.

Highlights

  • The cerebrospinal fluid (CSF) circulatory system is involved in neuroimmune regulation, cerebral detoxification, and delivery of various endogenous and exogenous substances

  • Using a quantitative method to measure the volumes of all CSF compartments in rats at embryonic day 19 (E19) and postnatal day 2 (P2) and 9 (P9), we describe the evolution of the CSF circulatory system in the developing brain during the perinatal period

  • Staining of tight junction proteins in choroid plexus and meningeal vessels, but not in ependyma, infers that CSF-filled compartments are an integral part of the Central nervous system (CNS) at this developmental stage

Read more

Summary

Introduction

The cerebrospinal fluid (CSF) circulatory system is involved in neuroimmune regulation, cerebral detoxification, and delivery of various endogenous and exogenous substances. The CSF circulates 1) in a caudo-rostral direction, either dorsally around the cerebellum and cortex, or centrally through the internal cisterns, which in rodents are mainly formed by the ambient and quadrigeminal cisterns located between the midbrain and hippocampi/cortices, 2) in a caudo-rostral direction and ventrally through the cerebellopontine, interpeduncular, optic tract, and laminae terminalis cisterns, and around the olfactory bulbs, and 3) caudally along the spinal cord In places such as the velum interpositum, ventricular and cisternal spaces are separated from each other only by a thin membrane which allows direct exchanges of material between the two fluid compartments [8,9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.