Abstract

How evolutionary changes in genes and neurons encode species variation in complex motor behaviors is largely unknown. Here, we develop genetic tools that permit a neural circuit comparison between the model species Drosophila melanogaster and the closely related species D.yakuba, which has undergone a lineage-specific loss of sine song, one of the two major types of male courtship song in Drosophila. Neuroanatomical comparison of song-patterning neurons called TN1 across the phylogeny demonstrates a link between the loss of sine song and a reduction both in the number of TN1 neurons and the neurites supporting the sine circuit connectivity. Optogenetic activation confirms that TN1 neurons in D.yakuba have lost the ability to drive sine song, although they have maintained the ability to drive the singing wing posture. Single-cell transcriptomic comparison shows that D.yakuba specifically lacks a cell type corresponding to TN1A neurons, the TN1 subtype that is essential for sine song. Genetic and developmental manipulation reveals a functional divergence of the sex determination gene doublesex in D.yakuba to reduce TN1 number by promoting apoptosis. Our work illustrates the contribution of motor patterning circuits and cell type changes in behavioral evolution and uncovers the evolutionary lability of sex determination genes to reconfigure the cellular makeup of neural circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call