Abstract

Composted tannery sludge (CTS) promotes shifts in soil chemical properties, affecting microbial communities. Although the effect of CTS application on the bacterial community has been studied, it is unclear whether this impact discriminates between the dominant and rare species. This present study investigated how the dominant and rare bacterial communities respond over time to different concentrations of CTS application (0, 2.5, 5, 10, and 20 tons/ha) for 180 days. The richness of operational taxonomic units (OTU) was 30-fold higher in the rare than in the dominant biosphere. While some phyla shifted their relative abundance differently in the dominant and rare biosphere, some genera increased their relative abundance under higher CTS concentrations, such as Nocardioides (∼100%), Rubrobacter (∼300%), and Nordella (∼400%). Undominated processes largely governed the dominant biosphere (76.97%), followed by homogeneous (12.51%) and variable (8.03%) selection, and to a lesser extent, the dispersal limitation (2.48%). The rare biosphere was driven by the CTS application as evidenced by the exclusively homogeneous selection (100%). This study showed that the rare biosphere was more sensitive to changes in soil chemical parameters due to CTS application, which evidences the importance explore this portion of the bacterial community for its biotechnological use in contaminated soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.