Abstract

Nitrogen stress as well as other stresses can negatively impact the plant development and metabolism. Generally, stress factors increase the reactive oxygen species (ROS) and methylglyoxal (MG) production, which may, in the absence of effective protective mechanisms, induce irreparable metabolic dysfunction and death. The effect of different amounts (from deficiency to excess) of nitrate, ammonium or nitrate combined to ammonium, on enzyme activities of antioxidant and methylglyoxal detoxification systems of two sorghum ecotypes (3P4 and 4P11) was studied. The N supply was performed per pot during the sowing step using potassium nitrate and/or ammonium sulfate. Six N treatments were applied using 120, 240 and 480 Kg ha-1 of ammonium or nitrate and three other treatments were applied using 120 kg ha-1 nitrate combined to 120, 240 and 480 kg ha-1of ammonium. The specific activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), glyoxalase I (Gly I) and glyoxalase II (Gly II) were investigated. Results showed that, ammonium excess and N-deficient conditions increased the contents of malondialdehyde (MDA), and induced the enzyme activities of ROS and MG detoxification systems, supporting the sorghum’s ability to counteract the negative effect of N stress (deficit and excess). We have also shown that the SOD, CAT, GR and Gly I enzyme activities were higher in the 4P11 ecotype compared to the 3P4 ecotype. These results indicate that sorghum ecotypes exhibit differential tolerance to N stress and suggest that the 4P11 ecotype has higher capacity to cope with N stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call