Abstract
Young or mature rosette leaves from spinach (Spinacia oleracea L.) plants growing in the field, in the greenhouse, or in a growth chamber under a regimen of 8 hours light and 16 hours dark contained 15 to 50 nanomoles per minute per gram wet weight of NADH:dihydroxyacetone phosphate reductase activity. Of this activity, 75 to 87% was the chloroplastic isoform and 25 to 13% was the cytosolic form. When plants were induced to senesce, as measured by stem elongation and flowering, the percentage of the two reductase isoforms in rosette or stem leaves changed to about 12% as the chloroplastic and 88% as the cytosolic isoform. The change in enzyme activity of the rosette leaves occurred within 3 days, before phenotypic changes were observed. Likewise, when plants senesced in continuous darkness, the percentage of chloroplastic to cytosolic reductase changed from 80:20% to 25:75% after 62 hours before changes in total protein or chlorophyll occurred. The ratio of activities did not change in the first 16 hours of darkness or overnight. In each case the change in ratio resulted from about a 75% decrease in activity of the chloroplastic isoform and up to 14-fold increase in cytosolic isoform. In spinach leaves purchased at a local market primarily only the cytosolic isoform remained. When plants were returned to normal day-nights, after 62 hours in continuous darkness, the activity of the chloroplastic isoform increased, but not to control levels after 3 days, while the cytosolic enzyme decreased within 1 day to normal day-night values. Changes in activity were not due to changes during in vitro assays in activation by thioredoxin for the chloroplastic isoform or fructose 2,6-phosphate for the cytosolic isoform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.