Abstract

Background: Multiple sclerosis (MS) is a neurodegenerative autoimmune disease with chronic inflammation. In the course of the disease, the increased levels of Th17 cell, and its relevant inflammatory factors, may cause disease inflammation and progression. Ozone therapy with anti-oxidant and anti-inflammatory functions is known as a beneficial therapeutic approach. The current non-controlled study aimed to evaluate the therapeutic implications of ozone autohemotherapy on Th17 responses in MS patients. Methods: 20 MS patients as the experimental group received ozone therapy (100 ml of O2/O3 compound (25 ugs/ml concentration) with 100 ml of autologous blood) twice per week for 6 months. The frequency of Th17 cells, gene expression of the relevant factors (RORɣt, IL-17, IL-23, miR-141, miR-155, and miR-200), as well as the secretion levels of IL-17 and IL-23 cytokines, were compared between the patient and control groups, as well as the group of patients before and after ozone therapy using the flow cytometry, Real-time PCR, and ELISA techniques, respectively. Results: Findings indicated the significant decrease in the frequency of Th17 cells (P = 0.0002), the expression levels of RORɣt and IL-17 (P = 0.0001 and P = 0.0004, respectively), as well as miR-141 and miR-155 (P<0.0001 and P<0.0001, respectively) in post-treatment condition with Ozone compared to pre-treatment condition. Also, the significant reduction in the secretion level of IL-17 (P = 0.043) was detected in treated patients. Discussion: Since increased levels and responses of Th17 cells may have critical roles in MS pathogenesis and inflammation, our findings revealed that ozone autohemotherapy could lower the Th17 responses in peripheral blood of MS patients and can be a beneficial approach in MS treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.