Abstract

Background Amputation in adults is a serious procedure or traumatic outcome, one that leads to a possible “remapping” of limb representations (somatotopy) in the motor and sensory cortex. The temporal and spatial extent underlying reorganization of somatotopy is unclear. The aim of this study was to better understand how local and global structural plasticity in sensory-motor cortical networks changes temporally and spatially after upper-limb amputation. Methods We studied 8 healthy nonamputee control subjects and 16 complete upper-limb amputees. Resting-state MRI (rs-fMRI) was used to measure local and large-scale relative differences (compared to controls) in both the amplitude of low-frequency fluctuations (ALFF) and degree of centrality (DC) at 2 months, 6 months, and 12 months after traumatic amputation. Results In amputees, rs-fMRI scans revealed differences in spatial patterns of ALFF and DC among brain regions over time. Significant relative increases in ALFF and DC were detected not only in the sensory and motor cortex but also in related cortical regions believed to be involved in cognition and motor planning. We observed changes in the magnitude of ALFFs in the pre- and postcentral gyrus and primary sensory cortex, as well as in the anterior cingulate, parahippocampal gyrus, and hippocampus, 2 months after the amputation. The regional distribution of increases/decreases in ALFFs and DC documented at 2-month postamputation was very different from those at 6 and 12-month postamputation. Conclusion Local and wide-spread changes in ALFFs in the sensorimotor cortex and cognitive-related brain regions after upper-limb amputation may imply dysfunction not only in sensory and motor function but also in areas responsible for sensorimotor integration and motor planning. These results suggest that cortical reorganization after upper extremity deafferentation is temporally and spatially more complicated than previously appreciated, affecting DC in widespread regions.

Highlights

  • Is complete traumatic limb amputation in adults an emotionally disturbing wound, but it can develop into a serious medical condition

  • Resting-state functional magnetic resonance imaging studies have shown that phantom limb pain is correlated with primary sensorimotor functional remapping after amputation, suggesting that this functional reorganization represents an inappropriate adjustment to deafferentation

  • We described changes in spatial patterns of intrinsic brain activity (ALFFs) and functional connectivity (DC) by measuring resting-state functional magnetic resonance imaging (rs-fMRI) in traumatic upper-limb amputees at 2 months, 6 months, and 12 months

Read more

Summary

Introduction

Is complete traumatic limb amputation in adults an emotionally disturbing wound, but it can develop into a serious medical condition. Local and wide-spread changes in ALFFs in the sensorimotor cortex and cognitive-related brain regions after upper-limb amputation may imply dysfunction in sensory and motor function and in areas responsible for sensorimotor integration and motor planning. These results suggest that cortical reorganization after upper extremity deafferentation is temporally and spatially more complicated than previously appreciated, affecting DC in widespread regions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call