Abstract

Inter-variable correlations (e.g., between daily temperature and precipitation) are key statistical properties to characterize probabilities of simultaneous climate events and compound events. Their correct simulations from climate models, both in values and in changes over time, is then a prerequisite to investigate their future changes and associated impacts. Therefore, this study first evaluates the capabilities of one 11-single run multi-model ensemble (CMIP6) and one 40-member single model initial-condition large ensemble (CESM) over Europe to reproduce the characteristics of a reanalysis dataset (ERA5) in terms of temperature-precipitation correlations and their historical changes.Next, the ensembles’ correlations for the end of the 21st century are compared. Over the historical period, both CMIP6 and CESM ensembles have season-dependent and spatially structured biases. Moreover, the inter-variable correlations from both ensembles mostly appear stationary. Thus, although reanalyses display significant correlation changes, none of the ensembles can reproduce them, with internal variability representing only 30% on the inter-model variability. However, future correlations show significant changes over large spatial patterns. Yet, those patterns are rather different for CMIP6 and CESM, reflecting a large uncertainty in changes. In addition, for historical and future projections, an analysis conditional on atmospheric circulation regimes is performed. The conditional correlations given the regimes are found to be the main contributor to the biases in correlation over the historical period, and to the past and future changes of correlation.These results highlight the importance of the large-scale circulation regimes and the need to understand their physical relationships with local-scale phenomena associated to specific inter-variable correlations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.