Abstract
B cell receptor (BCR) stimulation signal plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL), and kinase inhibitors directed toward the BCR pathway are now the promising anti-leukemic drugs. Ibrutinib, a Bruton tyrosine kinase inhibitor, demonstrates promising clinical activity in CLL. It is reported that ibrutinib, additionally to directly targeting leukemic cells, also inhibits the interactions of these cells with T cells, macrophages and accessory cells. Assessment of these mechanisms is important because of their non -direct anti-leukemic effects and to identify possible side effects connected with long-term drug administration.The aim of this study was to assess the in vivo effects of ibrutinib on T-cell subpopulations and cytokine network in CLL. The analysis was performed on a group of 19 patients during first month of ibrutinib therapy. The standard multicolor flow cytometry and cytometric bead array methods were used for assessment of T-cell subsets and cytokines/chemokines, respectively.The data obtained indicates that Ibrutinib treatment results in changes in T-cell subpopulations and cytokine network in CLL patients. Particularly, a significant reduction of T regulatory cells in peripheral blood was observed. By targeting these populations of T cells Ibrutinib can stimulate rejection of tumor cells by the immune system.
Highlights
Chronic lymphocytic leukemia (CLL), the most frequent type of adult leukemias in Western Countries, belongs to the group of lymphoproliferative disorders
B cell receptor (BCR) stimulation signal plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL), and kinase inhibitors directed toward the BCR pathway are the promising anti-leukemic drugs
BCR stimulation signal launches a signaling cascade leading to survival of leukemic cells and influences tissue homing and microenviroment [12, 13, 14]
Summary
Chronic lymphocytic leukemia (CLL), the most frequent type of adult leukemias in Western Countries, belongs to the group of lymphoproliferative disorders. It is defined as the disease of accumulation of mature monoclonal B cells and not their proliferation resulted from a defective apoptotic process [1, 2, 3]. The del17p or mutation of the TP53 gene, are associated with a worse prognosis [6, 7] These mutations are the cause of resistance to most chemotherapeutic agents used in the treatment of CLL because they mediate p53-dependent apoptosis [8, 9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.