Abstract

The retinal projection to the superior colliculus can be made abnormally dense by inducing a "compressed" retinal projection into a subnormal tectal volume, or abnormally sparse by monocular enucleation early in development. Any or all of the features of cell number, axonal arbor, dendritic arbor, and synaptic density could potentially be adjusted to compensate for such variations in the convergence of one cell population on another. We have examined the consequences of neonatal partial tectal ablation or monocular enucleation for synaptic length, density, and relative numbers of synapse classes in the superficial gray layer of the hamster superior colliculus. Monocular enucleation resulted in a reduction of synaptic density in the superficial gray layer of the colliculus ipsilateral to the remaining eye. This decrease in density was entirely accounted for by a reduction of the number of synapses with round vesicles, large asymmetric terminal specializations, and pale mitochondria characteristic of retinocollicular terminals (RLP synapses). There was no compensatory increase in any other synaptic class. RLP synapses were larger in monocular enucleates. Partial tectal ablation had no effect on synaptic density, nor on the relative proportions of different synaptic types. Synapses of the RLP class were slightly smaller than normal. These results suggest that synaptic density is normally at a maximum that cannot be altered by increases in potential input. However, density may be reduced by decreasing the number of inputs. Terminal classes do not appear to compete with each other within the collicular volume, suggesting that postsynaptic cells controls both the classes and numbers of their potential inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call