Abstract

Changes in subunit interaction energies linked to the allosteric transition of the regulatory enzyme aspartate transcarbamoylase (ATCase; EC 2.1.3.2) from Escherichia coli are localized in part at interfaces between the six catalytic (c) and six regulatory (r) polypeptide chains. Site-directed mutagenesis has been used to construct enzymes with amino acid substitutions in a limited region of the zinc-binding domain of the r chains. Substitution of Ser or His for r114 Cys, one of four cysteines binding the structural zinc ion in the regulatory chain, leads to incorrectly folded chains as shown by the inability to detect stable assembled holoenzyme in cell extracts. Replacement of r111 Asn by Ala at the interface between an r chain and a c chain in the apposing catalytic trimer causes a complete loss of the homotropic and heterotropic effects characteristic of wild-type ATCase. Moreover, sedimentation velocity experiments demonstrated that this mutant enzyme exists in the R ("relaxed") conformation in the absence of active site ligands due to preferential destabilization of the T ("taut") conformation relative to the R state. In contrast, replacement of r113 Asn by Ala at the interface between adjacent r and c chains leads to an increase in the cooperativity of the enzyme. When r139 Lys is replaced by Met, Vmax is reduced by 50% compared to wild-type ATCase, whereas it is increased about 2-fold when r142 Glu is replaced by Asp. Amino acid substitutions in this domain significantly affect subunit interaction energy as measured by rate of subunit exchange when holoenzymes are incubated with isolated catalytic subunits, thus permitting measurements of the effect of the bisubstrate analog N-(phosphonacetyl)-L-asparatate in weakening intersubunit interactions. Subunit exchange increased about 9-fold for the r142 Glu----Asp mutant and almost 20-fold for the r142 Glu----Ala mutant in the presence of the ligand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.