Abstract

The use of accelerometry to monitor activity in human stroke patients has revealed strong correlations between objective activity measurements and subjective neurological findings. The goal of our study was to assess the applicability of accelerometry-based measurements in experimental animals undergoing surgically-induced cerebral ischemia. Using a nonhuman primate cortical stroke model, we demonstrate for the first time that monitoring locomotor activity prior to and following cerebrovascular ischemic injury using an accelerometer is feasible in adult male rhesus macaques and that the measured activity outcomes significantly correlate with severity of brain injury. The use of accelerometry as an unobtrusive, objective preclinical efficacy determinant could complement standard practices involving subjective neurological scoring and magnetic resonance imaging in nonhuman primates. Similar activity monitoring devices to those employed in this study are currently in use in human clinical studies, underscoring the feasibility of this approach for assessing the clinical potential of novel treatments for cerebral ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.