Abstract

Abstract Changes in soil organic carbon, total nitrogen, pH, and the abundance of arbuscular mycorrhizal fungi are examined along a large-scale aridity gradient from southeast to northwest in China. Soil organic carbon and total nitrogen decreased but pH increased with increased aridity. Aboveground plant biomass, spore abundance, and colonization of roots by arbuscular mycorrhizal fungi also declined as the aridity increased. Soil organic carbon and total nitrogen were positively correlated with aboveground plant biomass, and arbuscular mycorrhizal fungal spore number and root colonization were positively correlated with soil organic carbon, total nitrogen, and aboveground plant biomass but were negatively correlated with soil pH. A structural equation model suggested that aridity affected soil organic carbon and total nitrogen by limiting aboveground plant biomass. Aridity exerted a large direct effect and smaller indirect effects (via changes in aboveground plant biomass) on the abundance of arbuscular mycorrhizal fungi. Soil pH also directly influenced arbuscular mycorrhizal fungal abundance. These results suggest that aboveground plant biomass could be a key factor driving the changes of soil organic carbon, total nitrogen, and arbuscular mycorrhizal fungal abundance along this aridity gradient in China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call