Abstract

Abstract Aims Grassland degradation represents a major challenge in the maintenance of grassland productivity. This process has dramatic impacts on energy flows and soil nutrient dynamics, thus directly or indirectly influencing soil microbes. Here, we aim to (i) examine changes in soil microbial composition, diversity and functionality in response to different levels of grassland degradation (i.e. non-degraded, moderately and severely degraded) in a temperate grassland in Inner Mongolia, and (ii) elucidate biotic and abiotic factors that are responsible for these changes. Methods The composition structure of soil microbial community was determined by high-throughput sequencing. The functionality of bacterial communities was examined using the tool of FAPROTAX, and functional guilds of fungal communities were quantified using the FUNGuild pipeline. Important Findings Grassland degradation significantly decreased soil bacterial diversity but it did not affect fungal diversity. Belowground biomass, soil organic carbon and total nitrogen were positively related to changes in diversity of bacterial community. Grassland degradation significantly increased the relative abundance of Chloroflexi (from 2.48% to 8.40%) and decreased Firmicutes (from 3.62% to 1.08%) of bacterial community. Degradation also significantly increased the relative abundance of Glomeromycota (from 0.17% to 1.53%) and decreased Basidiomycota (from 19.30% to 4.83%) of fungal community. The relative abundance of pathogenic fungi (Didymella and Fusarium) was decreased significantly by degradation. In addition, degradation had a significant impact on putative functionality of soil bacteria related to soil carbon and nitrogen cycling. Our results suggest that soil bacterial community is more sensitive than fungal community in response to degradation in the temperate grassland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.