Abstract

Contamination of soil with cadmium (Cd) threatens food safety and human health. In general, crop straws from contaminated soils could accumulate considerable amounts of Cd. The addition of Cd-containing rice straw can have negative effects on soil environment. In this study, straws varying in Cd concentration were added to soil at a rate of 5% (w/w) to investigate the effects of Cd-containing straw on soil Cd dynamics and soil microbial communities. Results showed that large amounts of Cd, especially bioavailable Cd, were released into soil during the decomposition of Cd-containing straws. The addition of straws with 10, 20 and 40 mg kg−1 Cd increased total Cd in soils from 0.31 mg kg−1 to 0.89, 1.39 and 2.09 mg kg−1, respectively, exceeding the screening value of total Cd < 0.4 mg kg−1 for paddy soils of pH 5.5–6.5 according to Chinese Soil Environmental Quality Standards. Moreover, the addition of Cd-containing straw decreased alpha-diversity of bacterial and fungal communities compared to the clean straw. Indeed, changes in soil factors including pH, Eh, dissolved organic C and Cd level jointly reconstructed soil microbial communities. The addition of Cd-containing straw increased the relative abundance of bacterial species Acidobacteria and Proteobacteria but decreased that of Firmicutes. Meanwhile, it increased the relative abundance of fungal species Basidiomycota and Fusarium which were considered Cd-tolerant. This study revealed the potential environmental risk and the variation of microbial communities caused by increasing soil Cd bioavailability after direct application of Cd-containing rice straw to the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call