Abstract

Changes in total soil carbon (C), nitrogen (N) and natural-abundance N isotopes (δ15N) were measured along three forest-to-pasture chronosequences on pumice soils in the Central North Island of New Zealand. On each of the three chronosequences, exotic pine forests had been converted to intensive dairy pastures 2–11 years before sampling and samples were also taken from remaining pine forests and long-term pastures (40–80 years old). The primary objective of the study was to test the hypothesis that surface-soil δ15N would increase over time following conversion of forest to pasture, due to greater N inputs and isotope-fractionating N losses (e.g. ammonia volatilisation) in pasture systems. Results supported our hypothesis, with linear regression revealing a significant (P < 0.001) positive correlation between log-transformed pasture age (log10[pasture age + 1]) and surface-soil δ15N. There was also a positive correlation (P < 0.001) between pasture age and total soil C and N, and a negative correlation of pasture age with C : N ratio. Surface-soil δ15N was also positively correlated (P < 0.001) with total soil N, and negatively correlated with C : N ratio when C : N was <13.6. These results suggested that as soils became more N-‘saturated’, isotope-fractionating N loss processes increased. Surface-soil δ15N in the pine forests was significantly less than subsoil δ15N, but there was no significant difference between the surface and subsoil in the long-term pastures, due to 15N enrichment of the surface soil. The difference in δ15N between the surface soil and subsoil may be a useful indicator of past land management, in addition to absolute δ15N values of surface soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.