Abstract

Rational land use can enhance soil nutrient sequestration and control erosion, but the mechanisms of the ecological restoration of soil-aggregate-associated carbon and nitrogen are still not well understood. A large-scale ecological restoration program was launched in the Loess Plateau during the 1990s. The ecological restoration programs involved converting slope farmland to woodland, grassland, shrub land, and terrace. We studied their effects in relation to cultivated land as control on soil aggregate structure and stability and their associated organic carbon and total nitrogen contents to 60 cm soil depth in the Loess Plateau. Our results indicate that the restoration practices reduced soil aggregate fragmentation, increased soil structure stability, and transformed micro-aggregates into small and large aggregates. Comparing with the soil aggregate >0.25 mm in cultivated land, the amount in woodland, grassland, shrub land and terrace increased by 71%, 66%, 46%, and 35%, respectively, which improved soil health overall. The mean weight diameter of aggregate indicates that soil aggregate stability (SAS) increased and soil hydraulic erosion resistance improved. In conclusion, ecological restoration directly or indirectly affected SAS through the influence of soil organic carbon and total nitrogen in different soil layers. Results of this study provide a scientific reference for understanding stabilization of soil aggregate and regional restoration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call