Abstract

AbstractThe length and frequency of extreme fire weather has increased across the globe in recent decades, with potential deleterious consequences to streamflow quantity, timing and quality. Changes in the hydrologic regime following wildfire can have substantial downstream consequences, affecting communities and ecosystems through flooding, erosion, loss of habitat and degraded water quality. While there are many studies that address post‐wildfire hydrology across the globe, there are few studies in the snow‐dominated regions. The 2017 Elephant Hill wildfire in south‐central BC burned across or adjacent to four watersheds with long‐term streamflow gauges providing a rare opportunity to evaluate hydrologic change. Several approaches were used to identify patterns of change following the wildfire, all of which suggest increased post‐fire flows. The before‐after‐control‐impact design showed significant increases in annual, spring and summer water yield from the small (49 km2) Arrowstone Creek watershed (30%, 21% and 86%, respectively). Significant increases in spring water yield were observed in the larger (5318 km2) Bonaparte River watershed (48%). Annual and summer water yield increased in the Bonaparte River (31% and 58%, respectively) but these changes were not statistically significant. In both the Bonaparte River and Arrowstone Creek, the onset of spring freshet (26 days earlier in both) was significantly advanced, however, the timing of maximum snowmelt discharge was significantly advanced (27 days earlier) only in Arrowstone Creek. Smaller changes were also observed in the reference watersheds; however, these were not statistically significant. The difference in results between the small and large watershed, as well as the effects of weather and watershed attributes, highlight the need for continued research into the relationships between wildfire and hydrologic regime across diverse landscapes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.