Abstract

IntroductionAcute trauma involving the anterior cruciate ligament is believed to be a major risk factor for the development of post-traumatic osteoarthritis 10 to 20 years post-injury. In this study, to better understand the early biological changes which occur after acute injury, we investigated synovial fluid and serum biomarkers.MethodsWe collected serum from 11 patients without pre-existing osteoarthritis from a pilot intervention trial (5 placebo and 6 drug treated) using an intra-articular interleukin-1 receptor antagonist (IL-1Ra) therapy, 9 of which also supplied matched synovial fluid samples at presentation to the clinic after acute knee injury (mean 15.2 ± 7.2 days) and at the follow-up visit for reconstructive surgery (mean 47.6 ± 12.4 days). To exclude patients with pre-existing osteoarthritis (OA), the study was limited to individuals younger than 40 years of age (mean 23 ± 3.5) with no prior history of joint symptoms or trauma. We profiled a total of 21 biomarkers; 20 biomarkers in synovial fluid and 13 in serum with 12 biomarkers measured in both fluids. Biomarkers analyzed in this study were found to be independent of treatment (P > 0.05) as measured by Mann-Whitney and two-way ANOVA.ResultsWe observed significant decreases in synovial fluid (sf) biomarker concentrations from baseline to follow-up for sfC-Reactive protein (CRP) (P = 0.039), sflubricin (P = 0.008) and the proteoglycan biomarkers: sfGlycosaminoglycan (GAG) (P = 0.019), and sfAlanine-Arginine-Glycine-Serine (ARGS) aggrecan (P = 0.004). In contrast, we observed significant increases in the collagen biomarkers: sfC-terminal crosslinked telopeptide type II collagen (CTxII) (P = 0.012), sfC1,2C (P = 0.039), sfC-terminal crosslinked telopeptide type I collagen (CTxI) (P = 0.004), and sfN-terminal telopeptides of type I collagen (NTx) (P = 0.008). The concentrations of seven biomarkers were significantly higher in synovial fluid than serum suggesting release from the signal knee: IL-1β (P < 0.0001), fetal aggrecan FA846 (P = 0.0001), CTxI (P = 0.0002), NTx (P = 0.012), osteocalcin (P = 0.012), Cartilage oligomeric matrix protein (COMP) (P = 0.0001) and matrix metalloproteinase (MMP)-3 (P = 0.0001). For these seven biomarkers we found significant correlations between the serum and synovial fluid concentrations for only CTxI (P = 0.0002), NTx (P < 0.0001), osteocalcin (P = 0.0002) and MMP-3 (P = 0.038).ConclusionsThese data strongly suggest that the biology after acute injury reflects that seen in cartilage explant models stimulated with pro-inflammatory cytokines, which are characterized by an initial wave of proteoglycan loss followed by subsequent collagen loss. As the rise of collagen biomarkers in synovial fluid occurs within the first month after injury, and as collagen loss is thought to be irreversible, very early treatment with agents to either reduce inflammation and/or reduce collagen loss may have the potential to reduce the onset of future post-traumatic osteoarthritis.Trial registrationThe samples used in this study were derived from a clinical trial NCT00332254 registered with ClinicalTrial.gov.

Highlights

  • Acute trauma involving the anterior cruciate ligament is believed to be a major risk factor for the development of post-traumatic osteoarthritis 10 to 20 years post-injury

  • Biomarker concentrations in the setting of acute knee injury To gain an understanding of the effect of joint injury on joint tissue turnover and pathology, we investigated 20

  • In synovial fluid, we observed a significant decrease between the two collection time points for the inflammatory marker sfCRP (P = 0.039), the cartilage superficial zone protein sflubricin (P = 0.008) and the biomarkers of proteoglycan: sfGAG (P = 0.019) and the aggrecanase cleaved aggrecan marker sfARGS aggrecan (P = 0.004)

Read more

Summary

Introduction

Acute trauma involving the anterior cruciate ligament is believed to be a major risk factor for the development of post-traumatic osteoarthritis 10 to 20 years post-injury. Acute trauma to the anterior cruciate ligament (ACL) or meniscus has recently been demonstrated to be a major risk factor for the development of osteoarthritis (OA) with a 50% chance of a patient developing symptomatic OA 10 to 20 years post-injury repair [1]. Unlike primary OA, post-traumatic secondary OA is initiated by intra-articular pathogenic processes with a known date of onset, namely the date of joint injury. This makes it much more amenable to early intervention than primary OA whose onset is not clearly definable at this time

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call