Abstract

The aim of this study was to examine the effects of changes in maximal aerobic (MAS) and sprinting (MSS) speeds and the anaerobic reserve (ASR) on repeated-sprint performance. Two hundred and seventy highly-trained soccer players (14.5 ± 1.6 year) completed three times per season (over 5 years) a maximal incremental running test to approach MAS, a 40-m sprint with 10-m splits to assess MSS and a repeated-sprint test (10 × 30-m sprints), where best (RSb) and mean (RSm) sprint times, and percentage of speed decrement (%Dec) were calculated. ASR was calculated as MSS-MAS. While ∆RSb were related to ∆MSS and ∆body mass (r2 = 0.42, 90%CL[0.34;0.49] for the overall multiple regression, n = 334), ∆RSm was also correlated with ∆MAS and ∆sum of 7 skinfolds (r2 = 0.43 [0.35;0.50], n = 334). There was a small and positive association between ∆%Dec and ∆MAS (r2 = 0.02 [−0.07;0.11], n = 334). Substantial ∆MSS and ∆MAS had a predictive value of 70 and 55% for ∆RSm, respectively. Finally, ∆ASR per se was not predictive of ∆RSm (Cohen’s = +0.8 to −0.3 with increased ASR), but the greater magnitude of ∆RSm improvement was observed when MSS, MAS and ASR increased together (0.8 vs. +0.4 with ASR increased vs. not, additionally to MSS and MAS). Low-cost field tests aimed at assessing maximal sprinting and aerobic speeds can be used to monitor ∆RS performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.