Abstract
Chronological changes in renal glomerular morphology and plasma renin activity were investigated during active and hibernating periods in the golden-mantled ground squirrel Spermophilus lateralis. The objective of this study was to determine whether the glomerular endothelium, visceral epithelium (podocytes), basement membrane, mesangial cells, proximal convoluted tubule cells and plasma renin activity exhibit measurable sequential differences between as well as within active and hibernating states at various time points. Limitations in the size of the experimental population prevented an evaluation of changes in these parameters during other important periods such as periodic arousal between hibernation bouts. In this study, glomerular endothelial pore number and epithelial filtration slit number significantly decreased by early hibernation when compared to those during summer activity, and then they increased back toward summer levels by late hibernation. In contrast, podocytic pedicel width along the glomerular basement membrane increased from summer activity to early hibernation, before significantly decreasing again by late hibernation. Mesangial cell and proximal convoluted tubule cell activity appeared increased during hibernation as compared to summer activity, whereas the width of the glomerular basement membrane showed no significant alterations throughout. Plasma renin activity significantly increased during early hibernation and mid-hibernation when compared to summer levels but had decreased by late hibernation toward summer values. The glomerular and plasma renin activity changes observed in this study clearly illustrate the drastic structural and functional adjustments which hibernating species make during torpor and also correlate well with the reported decrease in renal perfusion pressure and urine formation during hibernation.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.