Abstract

Previous studies have demonstrated that plasma progesterone levels decrease in pregnant rats treated in vivo with a gonadotropin-releasing hormone agonist (GnRH-Ag), without changes in testosterone or estradiol levels in ovarian vein plasma. The objective of this study was to determine the loci of GnRH-Ag disruption of progesterone synthesis by examining luteal mitochondria, lipid droplets, cellular composition, and P450 side-chain cleavage (P450scc) enzyme and mRNA content in the pregnant rat. On Day 7 or 11 of pregnancy, osmotic minipumps containing GnRH-Ag were implanted into 5-7 rats. Sham operations were performed on 5-6 controls at each time period. Five micrograms per day of GnRH-Ag were released for about 24 h, after which corpora lutea and jugular vein plasma were collected. The corpora lutea were prepared for microscopy or analyzed for P450scc enzyme and mRNA content. Plasma progesterone levels were measured by RIA. In those rats treated with GnRH-Ag, progesterone levels had decreased, and within the luteal cells, there was an increase in the number of lipid droplets and a decrease in the number of tubular cristae within the mitochondria. Concomitantly, P450scc enzyme and mRNA content decreased on both Day 8 and Day 12 of pregnancy. Also, GnRH-Ag treatment decreased the ratio of large to small steroidogenic luteal cells on Day 8 of pregnancy, but did not alter cellular ratios on Day 12 of pregnancy. These observations suggest that treatment with GnRH-Ag inhibits progesterone synthesis by decreasing the amount of P450scc mRNA and enzyme content, which may alter the mitochondrial cristae structure on Day 8 and Day 12 of pregnancy. The reduction in tubular cristae and P450scc enzyme in the mitochondria may account for the increase in lipid droplets, as less cholesterol is converted to pregnenolone. An additional mechanism of inhibition may be the reduction in the number of large steroidogenic luteal cells, which appear to be the major source of progesterone in the rat corpus luteum on Day 8 of pregnancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call