Abstract
As forced expiratory volume in 1 second (FEV(1)) is a major predictor of outcome in patients with cystic fibrosis (CF), we investigated the effect of FEV(1) on pulmonary mechanics in children and young adults with CF. We measured respiratory rate; tidal volume; minute ventilation; arterial blood gases; sniff esophageal pressure; dynamic lung compliance; total pulmonary resistance; intrinsic positive end expiratory pressure; and total, elastic, and resistive work of breathing in 32 patients (FEV(1) range: 12-49% predicted). We observed correlations between FEV(1) and Pa(O(2)) (r = 0.76, p < 0.0001) and Pa(CO(2)) (r = -0.70, p < 0.0001), FEV(1) and respiratory rate/tidal volume (r = -0.41, p = 0.02), FEV(1) and dynamic lung compliance (r = 0.64, p < 0.0001), and FEV(1) and total work of breathing (r = -0.52, p = 0.002) and elastic work of breathing (r = -0.60. p = 0.0003). No correlations were observed between FEV(1) and sniff esophageal pressure (p = 0.5), minute ventilation (p = 0.9), total pulmonary resistance (p = 0.3), intrinsic positive end expiratory pressure (p = 0.3), or resistive work of breathing (p = 0.1). As FEV(1) declines in children and young adults with CF, there is an increase in the elastic load and work of breathing, resulting in a rapid shallow breathing pattern, that is associated with further impairment of gas exchange.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: American Journal of Respiratory and Critical Care Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.