Abstract

The study purpose was to evaluate changes in puffing topography of experienced electronic cigarette users (vapers) when changing power settings in electronic cigarette battery devices. Experienced adult vapers (n = 21) were recruited. Participants used their own liquids and an atomizer and battery provided by the researchers. Two 30-minute sessions were performed, with the device power set at 6 W and 10 W, in a randomized, crossover, participant-blinded design. Puff number and duration (mean [SD]) were recorded in the provided electronic cigarette battery device, whereas the atomizers were weighted before and after use to determine liquid and nicotine consumption. Puff number and puff duration were lower at 10 W (46 [16] puffs and 3.8 [0.8] s) compared with 6 W (57 [20] puffs and 4.6 [1.0] s). Liquid and nicotine consumption was higher at 10 W (373 [176] mg and 4.2 [2.4] mg, respectively) compared with 6 W (308 [165] mg and 3.5 [2.3] mg, respectively). Vapers reported more aerosol volume and ease of use at 10 W compared with 6 W. The study identified an attempt for compensatory puffing patterns and nicotine self-titration, with a change in puffing patterns (puff number and duration) observed when changing the power settings of an e-cigarette device. Compensatory smoking behavior and nicotine self-titration is a well-established phenomenon. In electronic cigarettes, changing nicotine concentration in the liquid has been shown to trigger a compensatory puffing pattern. Herein, power setting of the electronic cigarette device was found to be a parameter associated with changes in puffing behavior, whereas higher power was preferable for the participants. These findings could contribute to the understanding of patterns of electronic cigarette use and could explain the preference of dedicated vapers to higher power devices. Additionally, laboratory studies evaluating aerosol emissions should consider using different puffing patterns according to the power settings tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.