Abstract

High and low levels of lipid-induced protein oxidation (tuned by the addition of 0%-8.4% water) were investigated in oleogels, using excitation-emission matrix (EEM) fluorescence spectroscopy, coupled with a partial least-squares (PLS) regression and lipid hydroperoxide data. In high-level oxidation models, the intrinsic tryptophan fluorescence decreased and the emission maxima increased from 352.5 to 356.0 nm indicating the presence of protein modifications, which was further supported by size-exclusion chromatography. PLS recognized 3 latent components, with several excitation-emission points of interest. These apparent compounds include a region associated with radical mediated protein modifications (approximately 325 and 410 nm), lipid oxidation product adducts (approximately 350 nm and 420-425 nm), and malondialdehyde adducts (approximately 375 and 425 nm). The separate evaluation of these apparent compounds, at a 420 nm emission, indicated that lipid oxidation promotes protein lipid adduct fluorescence at high water levels, rather than radical mediated protein fluorescence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call